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Comments on “A Coordinate-Free Approach to Wave

Reflection from a Uniaxially Anisotropic Medium”

FEDOR I. FEDOROV

I would like to point out that part of the contents of this paperl
. .

aPPear slmllar to sections 6, 17, 21, and 26 of [1], wifi some
variation of notation. Section III of the above paper gives for-

mulas which represent particular cases of general relations given

in sections 19 and 23 of [1].

The coordinate-free (covariaut) approach to the theory of

electromagnetic waves was first proposed in 1952 and was later

developed in several papers and three monographs in Russian, as

indicated in the references.

Reply2 by Hollis C. Chen3

I would like to thank Dr. Fedorov for bringing to our attention

the existence of some Russian literature, previously unknown in

the West.

After some search, it seems clear that these works were pub-

lished in some obscure journals and by minor publishers not

widely known even in the USSR. None of the references cited are

available in United States and British libraries, but I have traced

a copy of [1] to the U.S. Library of Congress.

Finally I might add that intial perusal of [1] indicates that the

author does not appear to have treated the problem solved in my

paper.
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Comments on “A Spectral-Domain Analysis of

Periodically Nonuniform Microstrip Lbes”

LEO J. RADEMACHER

Section 26 of Floquet’s paper [3] has become known as Floquet’s

theorem. Its application to transmission line problems leads

indeed to a fundamental system like eq. (2) in the paperl in
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LF. J Glandorf and I. Wolff, IEEE Truns. Mlcrowuue Theo~ Tech , vol.

MTT35, pp 336-343, Mar. 1987.

question, but with several values of/3 allowed. (Other fundamen-

tal systems are also possible [3, ch. II] but are of little practical

importance.) Usually the lowest possible value /3 = & is chosen

as the phase constant of the forward-traveling periodic wave and

/3= – PO as the phase constant of the backward-traveling peri-

odic wave. The general solution is the sum of some forward- and

some backward-traveling periodic waves. Periodic waves (also

referred to as Floquet modes) are used here instead of the

ordinary well-known waves which trm:port power independently

of each other. The latter (“partial waves” in [4]) will be called

physical waves throughout this comment. Both forward- and

backward-traveling periodic waves consist of both forward- and

backward-traveling space harmonics with the phase constant

~ = + P. + k2~/p, where the plus sign is valid for a forward and
the minus sign for a backward-traveling periodic wave. If such

whole numbers kl, kz exist that /3 = + /30 + k12v/p = – /?O+

k22 T/p, then the respective space harmonic is part of both the

forward- and the backward-traveling periodic wave. Without

knowing the characteristic impedances of forward- and back-

ward-traveling periodic waves beforehand, it is very difficult to

split the space harmonics into their components belonging to the

forward- or backward-traveling periodic wave, respectively. For

this purpose the authors use a physicaf plausibility check [2, p.

55] demanding the power transported by periodic waves not to

vary along the line.

Collin stresses the importance of distinguishing between peri-

odic and physical (“partial”) waves [4, sec. 9.3]. Both forward-

and backward-traveling periodic waves consist of both forward-

and backward-traveling physicaf waves. Although referencing

Collin’s standard textbook [4], the authors are totally unaware of

the foundations described there. In the first place they rather

unclearly introduce the periodic waves used throughout their

paper. (“In contrast to the case of the uniform microstrip line, in

the case of the periodically nonuniform microstrip line the func-

tions . . . are still periodic functions of the coordinate z.”) But in

order to obtain unique solutions, they then use the physical

plausibility check already mentioned above—although totally

inappropriate for the periodic waves under consideration. (As a

matter of fact they demand them to be physical waves at the

same time!)

Their results represent some obscure mixture of a forward- and

a backward-traveling periodic wave, instead of a pure forward-

traveling periodic wave, as the reader is led to believe. Because

both forward- and backward-traveling periodic waves have the

same phase constant, this parameter has been calculated correctly

and is presented in the paper in question, but characteristic

impedances have not been included. As the voltages and currents

shown in Figs. 11–14 in the paper include a backward-traveling

periodic wave component, the characteristic impedance does not

equal the ratio of voltage to current [4, sec. 9.3, eq. (25)], as the

reader is led to believe.

The method is an application of Jansen’s work [5] which has

the great advantage of including the effects of loss and finite strip

thickness. Because of the dependence on the z coordinate, a

much more complicated series expansion has to be used. The

authors apply a very special field theoretic description with

special-case expansion functions that must be matched to each

type of nonuniformity, such as zigzag or sine-shape contours.
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Only lines symmetric with respect to the z axis are considered,

and only waves with an even y component of the electric field

strength with x-coordinate dependence-–not for “brevity and

clearness” [p. 337 of the paper in question] but” in order to keep

the numerical effort as small as possible” [2, p. 31]. In the general

case, four times as many coefficients would have to be included

in the analysis. For the same reason of allowing numerical

solvability, two further oversimplifying assumptions are made:

loss is totally disregarded and the metallization thickness is

assumed zero— thus getting rid of the great advantages of Jansen’s

method [5]. In consequence, no information about the attenua-

tion versus frequency behavior is delivered by the “rigorous”

field theoretic approach, although these data are very important

in design. Absolutely no results are available in stopbands. (The

attenuation may increase in stopbands by only a few, but also by

a few thousand percent compared with the attenuation in neigh-

boring passbands.)

Remarkably, the numerical results (given only for passbands)

are claimed by the authors to be in good agreement with mea-

surements only “over a wide frequency range” (p. 343) and no

measured values are given near the second stopband. It should

also be noted that only moderate nonuniformities ( w~in /w~,X up

to 3.5) have been considered. Despite the “considerable” (p. 343)

numerical effort, the authors calculate only one out of the six

parameters describing nonuniform lines (attenuation constant,

phase constant, real and imaginary parts of the characteristic

impedances for the forward- and backward-traveling periodic

waves). Within stopbands no parameter can be calculated at all.

For a design process the results are therefore totally insufficient.

Rep~~ by E J. Glandorf and I. Wo~f 3

We totally disagree with the comments of L. J. Rademacher,

which need some fundamental clarifications. In detail:

1) Being aware of all the fundamental properties of periodic

waves, as explained below, we did not want to repeat the funda-

mental literature and introduced Floquet’s theorem as e.g. has

been done by Collin [4, sec. 9.6, p. 388] and not “rather un-

clearly” as claimed by Rademacher.

2) Principally the general solution for a periodic structure of

finite length is a sum of a forward- and a backward-traveling

periodic wave. In the case of an infinitely long periodic wave-

guide, however, forward- and backward-traveling periodic waves

can exist independently of each other. Only electromagnetic

fields which represent a pure traveling periodic wave on the

infinitely long guiding structure are considered in our paper.

These periodic waves are the only physical solutions for the

electromagnetic fields which can exist on the guiding structure

under consideration [4, p. 388].

3) Collin indeed stresses the importance of distinguishing be-

tween periodic waves and space harmonics. [4, p. 388] and he

clearly shows that only the periodic waves fulfill the boundary

conditions on the periodic guiding structure, whereas the space

harmonics cannot exist independently on their own, and there-

fore by no means are physicaf solutions.

4) In section 9.?, Collin [4] uses the term “ partiaf waves” for

electromagnetic waves existing on uniform connection lines be-

tween equidistant discontinuities, thereby forming a periodic

structure. The “partial waves” are different from the above-men-

tioned space harmonics and they cannot be used in the context
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discussed in our paper. Their application requires an exact

knowledge of the transmission characteristics of one subsection

of the periodic guiding structure. The partiaf waves indeed are

physicaf waves but they only exist on the homogeneous connection

lines.

5) Rademacher claims that for two integers kl and k2 and

(1)

a coupling between forward- and backward-traveling periodic

waves occurs and that therefore no pure forward-traveling wave

can be analyzed by the presented method without knowing

a priori the characteristic impedances. In his arguments Rade-

macher overlooked that solving his conditional equation (1) leads

to ~o.p = (k2 – lcl)r = km, where k is again an integer. This

condition is only fulfilled at the boundaries between stopbands

and passbands, e.g. [4, p. 387, fig. 9,9] or [6, p, 319, fig. 7.5.3].

The field distribution in this case is a pure standing wave [4, sec.

9.5, p. 387]. Even in this case the field solution can be described

by the infinite sum of space harmonics as used in our paper (eq.

(3)). Of course, in this case the soluticm for the backward-travel-

ing wave (& < O) is identical with the solution of the forward-

traveling wave (/30 > O) because both are standing waves and this

leads to Rademacher’s conditional equation (1). For all other

values of & the argument of Rademacher does not apply and

need not be discussed,

6) What Rademacher calls a “plausibility check” is the funda-

menttll physical condition called Poynting’s law [4, p. 10]. In the

case of a lossless guiding structure, eq. (25) of [4] leads to the

relation

( }Re $(i?x@ZdA =0

s

(2)

which is identicaf to the condition used in [2] that the power

transported through the cross secticm of the periodic guiding

structure be independent of the z coordinate along the line.

Condition (2) must be applied to the total electromagnetic field,

i.e., the fields of the periodic waves, and not to the different

space harmonics separately (compare also [4, sec. 9.6, p. 388]).

7) Insofar the solutions presented in our paper by no means

are mixtures of forward- and backward-traveling periodic waves.

They are derived from a pure forward-traveling periodic wave.

This also can clearly be seen from Fig,s. 11 to 14 in our paper. In

case of two periodic waves traveling in opposite directions, the

voltages and currents on the lines must exhibit an additional

periodic dependence on the z coordinate with a periodicity of

/3/29r. This cannot be found in our results, as is very obvious

from e.g. the results for /3N = 0.1. Indeed, the characteristic

impedances of the forward-traveling periodic wave (excluding the

discussion of the definition of characteristic impedances on mi-

crostrip lines [7]) can be calculated from the voltages and cur-

rents shown in Figs. 11 to 14, or from the transported power and

the currents or voltages. These characteristic impedances are not

identicaf to the impedances obtained by using formulas for the

characteristic impedance of uniform microstrip lines and insert-

ing w(z)!

8) Rademacher apparently was not aware also that the method

of Jansen [5], which was the basis of our work, uses a field

analysis method for microstrip structures with zero metallization

thickness and no losses. Although losses and finite strip thickness

are mentioned in the title of .lansen’s paper, in the first sentence

of the abstract of his paper he points out that with his optimized

rigorous hybrid mode solutions, line characteristics ( Eeff, ZO) are

calculated on the basis of electromagnetic fields for zero metalli-
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zation thickness. The influence of the metallization thickness and

the losses are introduced into the theo”iy on the basis of these

fields by approximate methods. Hence we did not eliminate the

advantages of Jansen’s method but instead benefited from his

rigorous field formulations by using the same physical idealiza-

tions. As has been mentioned by Jansen in the paper referenced

by Rademacher [5, p. 77]: “in view of the small percentage

influence of t (metallization thickness) except for impracticably

small strip widths (and spacings) the excess work involved in a

rigorous solution of the finite thickness strip boundary value

problem can surely not be justified for design purpose.” As a

result up to now (even nine years after the publication of Jansen’s

paper) no spectral-domain calculation taking into account finite

metallization thickness is known to the authors from the litera-

ture.

In consequence of the assumed lossless guiding structure, the

result, as is well known from the fundamental literature, e.g. [4],

can be only that no wave propagation is possible in stopbands, in

agreement with our results.

9) The measurements presented in our paper are over a

frequency range from 1 GHz to 12 GHz, which is the frequency

range of the HP 8410 network analyzer which was available for

measurements. More measurement results, which also include

results near the second stopband, can be found in [2].

10) L. Rademacher is right if he mentions that the numerical

effort of the method is high, but on the other hand the method

presented for the first time gives insight into the electromagnetic

field distribution and the current density distribution of a com-

plicated microwave structure. Additionally it is the first known

rigorous solution for periodically nonuniform microstnp lines on

which (as we hope) further research work can be based.
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